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A. OBJECTIVES 
 

The objective of this work is to develop proof-of-principle fabrication technology for a 
large-actuator-stroke deformable mirror (DM) that can provide the large wavefront correction 
that will be needed by a number of planned NASA missions featuring mechanically-flexible 
space-based telescope apertures. 

 
 

B. PROGRESS AND RESULTS 
 

Adaptive optical systems for future ultra-large telescopes require optical-quality, large-
area, single-face-sheet DMs (concept as shown in Fig. 1 [1]).  High-density (e.g. 1000 x 1000) 
underlying microactuator arrays will be incorporated in these DMs, so low-voltage (~ 50V) 
operation is essential.  Also, thick (>10 µm) single-face-sheet mirror membrane will be needed 
for large-area DMs, in order to increase the surface quality of the mirror.  Micromachined DMs 
have been reported; however, they require high-voltage operation (200-700V) [2-5], and show 
marginal surface quality [2,3] or high influence function (inter-actuator coupling) [3,4].  Major 
requirements of an actuator membrane, for DMs with ~30-cm-diameter mirror membrane, are > 
5 µm stroke (> 10λ to λ/15 at λ= 0.5 µm) at ~50 V and > 500 N/m stiffness (>>10 times stiffer 
than the mirror membrane for lower influence function).  Ultimately, optical-quality DMs can be 
fabricated using the membrane-transfer technique demonstrated by our group [1]. 

 
We have fabricated and characterized a series of PZT membrane actuators with various 

membrane designs, in order to optimize the actuator geometry (Table 1).   Fig. 2 (a) shows a 
photograph of fabricated arrays of actuators, and (b) a schematic illustration of the structure.  
The actuation principle is as follows:  an electric field applied vertically to the piezoelectric layer 
induces contraction in the lateral direction, causing the membrane to deflect downward (d31 
mode). It is also possible to apply a field in the lateral direction using a pair of adjacent 
electrodes patterned on top of the PZT (d33 mode).   

 
Actuator vertical deflection (stroke) measurements were taken using a WYKO optical 

profiler (Fig. 3).  Fig. 4 depicts deflection vs. voltage curves for d31- and d33-mode actuators.  
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The d33-mode actuation usually yields larger deflection, but requires higher voltage [4]; 
therefore, our focus was on optimizing the d31-mode actuators.  The amount of deflection is 
strongly dependent upon electrode/membrane size ratio, as well as Si membrane/PZT film 
thickness ratio, as presented in Fig. 5.  For membranes 2.5 mm in diameter, the optimized 
Si/PZT thickness ratio was approximately 6.  Optimum electrode diameter was found to be 
40%~60% of the membrane diameter.  For a 2.5-mm diameter membrane (PZT 2 µm thick, Si 15 
µm thick), the measured vertical stroke is 5.4 µm at 50V.  More experimental work is underway 
to further increase the membrane stroke, while maintaining the size, stiffness and low applied 
voltage; the improved results will be included in a full final report.  PZT membrane actuators with 
spiral and concentric ring electrodes have also been characterized, and shown to give an improvement in deflection 
for thin Si membranes.  However, for Si membrane thickness of 10 µm or greater, plain circular electrodes gave 
more deflection.   

 
The measured resonant frequency of the membrane is 40 kHz (Fig. 6), far exceeding the 

bandwidth performance of most MEMS-based deformable mirrors (1~3 kHz).  From this 
measured resonant frequency, the stiffness of the actuator is determined to be approximately 
1600 N/m, which exceeds the actuator stiffness requirement for typical large-area, continuous-
membrane DMs.    
 
C. SIGNIFICANCE OF RESULTS 
               

Space-based astronomical imaging systems are inherently challenged by the need to 
achieve near-diffraction-limited performance with lightweight optical components. For many 
future space-based systems, such diffraction-limited performance will require the use of 
deformable mirrors as wavefront correctors. NASA is planning ultra-large, lightweight space 
telescopes for the scientifically critical UV-visible (0.1-1 µm), mid-infrared (3-30 µm) and far-
infrared (30-300 µm) wavelength regimes.  Missions being considered include SUVO, a 4-8 m 
UV-visible telescope, SAFIR, an 8-10 m far-IR telescope, and Planet Imager, a 30 m telescope.  
Launching conventional rigid primary mirrors is prohibitively expensive, so it is planned to 
deploy either a segmented aperture, as with the James Webb Space Telescope (JWST), or 
relatively flexible monolithic primary mirrors whose large surface errors are corrected by 
subsequent active or adaptive wavefront control.  These concepts potentially involve wavefront 
errors much greater than several wavelengths. The key optical component needed for effective 
wavefront compensation is a large-stroke, continuous-membrane deformable mirror with high 
actuator density that is scalable to large areas (high actuator count).  Our ultimate goal is to 
develop deformable mirrors meeting the requirements of these demanding missions. 
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30~80% of membraneElectrode diameter

plain circle, lateral 
(d33) mode, concentric 
rings, spiral, segmented

Electrode types

0.5, 1.0, 2.5mmMembrane diameter

2~20 µmSilicon membrane 
thickness

1~5 µmPZT thickness

30~80% of membraneElectrode diameter

plain circle, lateral 
(d33) mode, concentric 
rings, spiral, segmented

Electrode types

0.5, 1.0, 2.5mmMembrane diameter

2~20 µmSilicon membrane 
thickness

1~5 µmPZT thickness

Table1: Membrane actuator design parameters 

10  µ m 
Actuation of the 
center deformable 
actuator 

Transferred, 
continuous mirror  
membrane 

membrane actuator  

Mirror post 

Bottom post 

Transferred mirror membrane

Substrate wafer 
containing underlying 
microactuator array 

~30 cm 

Fig.1 Concept schematic for a large-area continuous membrane deformable 
mirror (DM) [1].  For quality mirror surface, the mirror membrane thickness is 
required at  > 10 µm. 
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Fig.2 (a) A photograph of PZT actuator array. (b) The structure of the PZT 
unimorph actuator.   
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4.5µm 

Fig. 3: Deflection profile of a PZT unimorph actuator. Thickness of PZT/Si are 
2µm/15µm. 
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Fig. 5: (a) Membrane deflections for different electrode sizes. (b) 
Deflections at 20V for actuators with various Si/PZT thickness 
ratios. 

Fig. 4: 
Deflections of 
PZT unimorph 
membrane (d31 
& d33 modes), 
diameter of 
2.5mm.  Each 
membrane is 
poled prior to 
this 
measurement. 
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Fig. 6: Frequency response of PZT unimorph actuator. 
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